Questions

Q1.
(a) Factorise completely $x^{3}+10 x^{2}+25 x$
(b) Sketch the curve with equation

$$
y=x^{3}+10 x^{3}+25 x
$$

showing the coordinates of the points at which the curve cuts or touches the x-axis.

The point with coordinates $(-3,0)$ lies on the curve with equation

$$
y=(x+a)^{3}+10(x+a)^{2}+25(x+a)
$$

where a is a constant.
(c) Find the two possible values of a.

Q2.

$$
g(x)=4 x^{3}-12 x^{2}-15 x+50
$$

(a) Use the factor theorem to show that $(x+2)$ is a factor of $g(x)$.
(b) Hence show that $\mathrm{g}(x)$ can be written in the form $\mathrm{g}(x)=(x+2)(a x+b)^{2}$, where a and b are integers to be found.

Figure 2
Figure 2 shows a sketch of part of the curve with equation $y=g(x)$
(c) Use your answer to part (b), and the sketch, to deduce the values of x for which
(i) $g(x) \leq 0$
(ii) $g(2 x)=0$

Q3.

$$
f(x)=2 x^{3}-13 x^{2}+8 x+48
$$

(a) Prove that $(x-4)$ is a factor of $f(x)$.
(b) Hence, using algebra, show that the equation $\mathrm{f}(x)=0$ has only two distinct roots.

Figure 2
Figure 2 shows a sketch of part of the curve with equation $y=\mathrm{f}(x)$.
(c) Deduce, giving reasons for your answer, the number of real roots of the equation

$$
\begin{equation*}
2 x^{3}-13 x^{2}+8 x+46=0 \tag{2}
\end{equation*}
$$

Given that k is a constant and the curve with equation $y=\mathrm{f}(x+k)$ passes through the origin,
(d) find the two possible values of k.

Q4.

Figure 3
Figure 3 shows part of the curve with equation $y=3 \cos x^{\circ}$.
The point $P(c, d)$ is a minimum point on the curve with c being the smallest negative value of x at which
a minimum occurs.
(a) State the value of c and the value of d.
(b) State the coordinates of the point to which P is mapped by the transformation which transforms the curve with equation $y=3 \cos x^{\circ}$ to the curve with equation
(i) $y=3 \cos \left(\frac{x^{\circ}}{4}\right)$
(ii) $y=3 \cos (x-36)^{\circ}$
(c) Solve, for $450^{\circ} \leq \theta<720^{\circ}$

$$
3 \cos \theta=8 \tan \theta
$$

giving your solution to one decimal place.
In part (c) you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

Q5.

$$
\mathrm{f}(x)=2 x^{2}+4 x+9 \quad x \in \mathbb{R}
$$

(a) Write $\mathrm{f}(x)$ in the form $a(x+b)^{2}+c$, where a, b and c are integers to be found.
(b) Sketch the curve with equation $y=\mathrm{f}(x)$ showing any points of intersection with the coordinate axes and the coordinates of any turning point.
(c) (i) Describe fully the transformation that maps the curve with equation $y=\mathrm{f}(x)$ onto the curve with equation $y=g(x)$ where

$$
\mathrm{g}(x)=2(x-2)^{2}+4 x-3 \quad x \in \mathbb{R}
$$

(ii) Find the range of the function

$$
\mathrm{h}(x)=\frac{21}{2 x^{2}+4 x+9} \quad x \in \mathbb{R}
$$

Mark Scheme

Q1.

Notes

(a) M1: Takes out factor x

A1: Correct factorisation - allow $x(x+5)(x+5)$
(b) M1: Correct shape

A1ft: Curve passes through the origin $(0,0)$ and touches at $(-5,0)$ - allow follow through from incorrect factorisation
(c) M1: May be implied by one of the correct answers for a or by a statement

A1ft: ft from their cubic as long as it meets the x-axis only twice.
A 1 ft : ft from their cubic as long as it meets the x-axis only twice.

Q2.

Question	Scheme	Marks	AOs
(a)	$(\mathrm{g}(-2))=4 \times-8-12 \times 4-15 \times-2+50$	M1	1.1b
	$\mathrm{g}(-2)=0 \Rightarrow(x+2)$ is a factor	A1	2.4
		(2)	
(b)	$4 x^{3}-12 x^{2}-15 x+50=(x+2)\left(4 x^{2}-20 x+25\right)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$=(x+2)(2 x-5)^{2}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(4)	
(c)	(i) $x \leqslant-2, x=2.5$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1ft } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \\ & \hline \end{aligned}$
	(ii) $x=-1, x=1.25$	B1ft	2.2a
		(3)	
(9 marks)			

(a)

M1: Attempts $g(-2)$ Some sight of (-2) embedded or calculation is required.
So expect to see $4 \times(-2)^{3}-12 \times(-2)^{2}-15 \times(-2)+50$ embedded

$$
\text { Or }-32-48+30+50 \text { condoning slips for the M1 }
$$

Any attempt to divide or factorise is M0. (See demand in question)
A1: $\mathrm{g}(-2)=0 \Rightarrow(x+2)$ is a factor.
Requires a correct statement and conclusion. Both " $\mathrm{g}(-2)=0$ " and " $(x+2)$ is a factor" must be seen in the solution. This may be seen in a preamble before finding $\mathrm{g}(-2)=0$ but in these cases there must be a minimal statement ie QED, "proved", tick etc.
Also accept, in one coherent line/sentence, explanations such as, 'as $\mathrm{g}(x)=0$ when $x=-2,(x+2)$ is a factor.'
(b)

M1: Attempts to divide $\mathrm{g}(x)$ by $(x+2)$ May be seen and awarded from part (a)
If inspection is used expect to see $4 x^{3}-12 x^{2}-15 x+50=(x+2)\left(4 x^{2}\right.$.

If algebraic / long division is used expect to see $\frac{4 x^{2} \pm 20 x}{x + 2 \longdiv { 4 x ^ { 3 } - 1 2 x ^ { 2 } - 1 5 x + 5 0 }}$
A1: Correct quadratic factor is $\left(4 x^{2}-20 x+25\right)$ may be seen and awarded from part (a)
M1: Attempts to factorise their $\left(4 x^{2}-20 x+25\right)$ usual rule $(a x+b)(c x+d), a c= \pm 4, b d= \pm 25$
A1: $(x+2)(2 x-5)^{2}$ oe seen on a single line. $(x+2)(-2 x+5)^{2}$ is also correct.
Allow recovery for all marks for $\mathrm{g}(x)=(x+2)(x-2.5)^{2}=(x+2)(2 x-5)^{2}$ (c)(i)

M1: For identifying that the solution will be where the curve is on or below the axis. Award for either $x \leqslant-2$ or $x=2.5$ Follow through on their $\mathrm{g}(x)=(x+2)(a x+b)^{2}$ only where $a b<0$ (that is a positive root). Condone $x<-2$ See SC below for $\mathrm{g}(x)=(x+2)(2 x+5)^{2}$

A1ft: BOTH $x \leqslant-2, x=2.5 \quad$ Follow through on their $-\frac{b}{a}$ of their $\mathrm{g}(x)=(x+2)(a x+b)^{2}$ May see $\{x \leqslant-2 \cup x=2.5\}$ which is fine.
(c) (ii)

B1ft: For deducing that the solutions of $\mathrm{g}(2 x)=0$ will be where $x=-1$ and $x=1.25$
Condone the coordinates appearing $(-1,0)$ and $(1.25,0)$
Follow through on their 1.25 of their $g(x)=(x+2)(a x+b)^{2}$
SC: If a candidate reaches $\mathrm{g}(x)=(x+2)(2 x+5)^{2}$, clearly incorrect because of Figure 2, we will award
In (i) M1 A0 for $x \leqslant-2$ or $x<-2$
In (ii) B1 for $x=-1$ and $x=-1.25$

Alt (b)	$4 x^{3}-12 x^{2}-15 x+50=(x+2)(a x+b)^{2}$ $=a^{2} x^{3}+\left(2 b a+2 a^{2}\right) x^{2}+\left(b^{2}+4 a b\right) x+2 b^{2}$		
	Compares terms to get either a or b	M1	1.1 b
	Either $a=2$ or $b=-5$	A1	1.1 b
	Multiplies out expression $(x+2)(\pm 2 x \pm 5)^{2}$ and compares to $4 x^{3}-12 x^{2}-15 x+50$	M1	
	All terms must be compared or else expression must be multiplied out and establishes that $4 x^{3}-12 x^{2}-15 x+50=(x+2)(2 x-5)^{2}$	A1	1.1 b
		(4)	

Q3.

Question	Scheme	Marks	AOs
(a)	Attempts $\mathrm{f}(4)=2 \times 4^{3}-13 \times 4^{2}+8 \times 4+48$	M1	1.1b
	$\mathrm{f}(4)=0 \Rightarrow(x-4)$ is a factor	A1	1.1b
		(2)	
(b)	$2 x^{3}-13 x^{2}+8 x+48=(x-4)\left(2 x^{2} \ldots x-12\right)$	M1	2.1
	$=(x-4)\left(2 x^{2}-5 x-12\right)$	A1	1.1b
	Attempts to factorise quadratic factor or solve quadratic eqn	dM1	1.1b
	$\mathrm{f}(x)=(x-4)^{2}(2 x+3) \Rightarrow \mathrm{f}(x)=0$ has only two roots, 4 and -1.5	A1	2.4
		(4)	
(c)	Deduces either three roots or deduces that $\mathrm{f}(x)$ is moved down two units	M1	2.2a
	States three roots, as when $\mathrm{f}(x)$ is moved down two units there will be three points of intersection (with the x-axis)	A1	2.4
		(2)	
(d)	For sight of $k= \pm 4, \pm \frac{3}{2}$	M1	1.1b
	$k=4,-\frac{3}{2}$	A1ft	1.1b
		(2)	
(10 marks)			

Notes

(a)

M1: Attempts to calculate $f(4)$.
Do not accept $f(4)=0$ without sight of embedded values or calculations.
If values are not embedded look for two correct terms from $f(4)=128-208+32+48$
Alternatively attempts to divide by $(x-4)$. Accept via long division or inspection.
See below for awarding these marks.
A1: Correct reason with conclusion. Accept $f(4)=0$, hence factor as long as M1 has been scored.
This should really be stated on one line after having performed a correct calculation. It could appear as a preamble if the candidate states "If $\mathrm{f}(4)=0$, then $(x-4)$ is a factor before doing the calculation and then writing hence proven or \checkmark oe.
If division/inspection is attempted it must be correct and there must be some attempt to explain why they have shown that $(x-4)$ is a factor. Eg Via division they must state that there is no remainder, hence factor
(b)

M1: Attempts to find the quadratic factor by inspection (correct first and last terms) or by division (correct first two terms)

So for inspection award for $2 x^{3}-13 x^{2}+8 x+48=(x-4)\left(2 x^{2} \ldots x \pm 12\right)$

$$
\frac{2 x^{2}-5 x}{x - 4 \longdiv { 2 x ^ { 3 } - 1 3 x ^ { 2 } + 8 x + 4 8 }}
$$

For division look for $\frac{2 x^{3}-8 x^{2}}{-5 x^{2}}$
A1: Correct quadratic factor $\left(2 x^{2}-5 x-12\right)$ For division award for sight of this "in the correct place" You don't have to see it paired with the $(x-4)$ for this mark.
If a student has used division in part (a) they can score the M1 A1 in (b) as soon as they start attempting to factorise their $\left(2 x^{2}-5 x-12\right)$.
dM1: Correct attempt to solve or factorise their $\left(2 x^{2}-5 x-12\right)$ including use of formula
Apply the usual rules $\left(2 x^{2}-5 x-12\right)=(a x+b)(c x+d)$ where $a c= \pm 2$ and $b d= \pm 12$
Allow the candidate to move from $(x-4)\left(2 x^{2}-5 x-12\right)$ to $(x-4)^{2}(2 x+3)$ for this mark.
dM1: Correct attempt to solve or factorise their $\left(2 x^{2}-5 x-12\right)$ including use of formula Apply the usual rules $\left(2 x^{2}-5 x-12\right)=(a x+b)(c x+d)$ where $a c= \pm 2$ and $b d= \pm 12$ Allow the candidate to move from $(x-4)\left(2 x^{2}-5 x-12\right)$ to $(x-4)^{2}(2 x+3)$ for this mark.
A1: Via factorisation
Factorises twice to $\mathrm{f}(x)=(x-4)(2 x+3)(x-4)$ or $\mathrm{f}(x)=(x-4)^{2}(2 x+3)$ or $\mathrm{f}(x)=2(x-4)^{2}\left(x+\frac{3}{2}\right)$ followed by a valid explanation why there are only two roots. The explanation can be as simple as

- hence $x=4$ and $-\frac{3}{2}$ (only). The roots must be correct
- only two distinct roots as 4 is a repeated root

There must be some understanding between roots and factors.
E.g. $\mathrm{f}(x)=(x-4)^{2}(2 x+3)$
only two distinct roots is insufficient.
This would require two distinct factors, so there are two distinct roots.
Via solving.
Factorsises to $(x-4)\left(2 x^{2}-5 x-12\right)$ and solves $2 x^{2}-5 x-12=0 \Rightarrow x=4,-\frac{3}{2}$ followed by an explanation that the roots are $4,4,-\frac{3}{2}$ so only two distinct roots.
Note that this question asks the candidate to use algebra so you cannot accept any attempt to use their calculators to produce the answers.
(c)

M1: For a valid deduction.
Accept either there are 3 roots or state that it is a solution of $\mathrm{f}(x)=2$ or $\mathrm{f}(x)-2=0$
A1: Fully explains:
Eg. States three roots, as $\mathrm{f}(x)$ is moved down by two units (giving three points of intersection with the x-axis)
Eg. States three roots, as it is where $\mathrm{f}(x)=2$ (You may see $y=2$ drawn on the diagram)
(d)

M1: For sight of ± 4 and $\pm \frac{3}{2} \quad$ Follow through on \pm their roots.
A1ft: $k=4,-\frac{3}{2}$ Follow through on their roots. Accept $4,-\frac{3}{2}$ but not $x=4,-\frac{3}{2}$

Q4.

Question	Scheme	Marks	AOs
(a)	$\left(-180^{\circ},-3\right)$	B1	1.1b
		(1)	
(b)	(i) $\left(-720^{\circ},-3\right)$	B1ft	2.2a
	(ii) $\left(-144^{\circ},-3\right)$	B1 ft	2.2a
		(2)	
(c)	Attempts to use both $\tan \theta=\frac{\sin \theta}{\cos \theta}, \sin ^{2} \theta+\cos ^{2} \theta=1$ and solves a quadratic equation in $\sin \theta$ to find at least one value of θ	M1	3.1a
	$3 \cos \theta=8 \tan \theta \Rightarrow 3 \cos ^{2} \theta=8 \sin \theta$	B1	1.1b
	$\begin{aligned} & 3 \sin ^{2} \theta+8 \sin \theta-3=0 \\ & (3 \sin \theta-1)(\sin \theta+3)=0 \end{aligned}$	M1	1.1b
	$\sin \theta=\frac{1}{3}$	A1	2.2a
	awrt 520.5° only	A1	2.1
		(5)	
(8 marks)			

(a)

B1: Deduces that $P\left(-180^{\circ},-3\right)$ or $c=-180^{(0)}, d=-3$
(b)(i)

B1ft: Deduces that $P^{\prime}\left(-720^{\circ},-3\right)$ Follow through on their $(c, d) \rightarrow(4 c, d)$ where d is negative (b)(ii)

B1ft: Deduces that $P^{\prime}\left(-144^{\circ},-3\right)$ Follow through on their $(c, d) \rightarrow\left(c+36^{\circ}, d\right)$ where d is negative
(c)

M1: An overall problem solving mark, condoning slips, for an attempt to

- use $\tan \theta=\frac{\sin \theta}{\cos \theta}$,
- use $\pm \sin ^{2} \theta \pm \cos ^{2} \theta= \pm 1$
- find at least one value of θ from a quadratic equation in $\sin \theta$

B1: Uses the correct identity and multiplies across to give $3 \cos \theta=8 \tan \theta \Rightarrow 3 \cos ^{2} \theta=8 \sin \theta$ oe
M1: Uses the correct identity $\sin ^{2} \theta+\cos ^{2} \theta=1$ to form a 3 TQ in $\sin \theta$ which they attempt to solve using an appropriate method. It is OK to use a calculator to solve this
A1: $\sin \theta=\frac{1}{3}$ Accept sight of $\frac{1}{3}$. Ignore any reference to the other root even if it is "used"
A1: Full method with all identities correct leading to the answer of awit 520.5° and no other values.

Q5.

Part	Working or answer an examiner might expect to see	Mark	Notes
(a)	$2 x^{2}+4 x+9=2(x+b)^{2}+c$	B1	This mark is given for writing $\mathrm{f}(x)$ in the form $a(x+b)^{2}+c$ with $a=2$
	$2 x^{2}+4 x+9=2(x+1)^{2}+c$	M1	This mark is given for writing $\mathrm{f}(x)$ in the form $a(x+b)^{2}+c$ with $a=2$ and $b=1$
	$2 x^{2}+4 x+9=2(x+1)^{2}+7$	A1	This mark is given for writing $\mathrm{f}(x)$ in the form $a(x+b)^{2}+c$ with $a=2, b=1$ and $c=7$
(b)		B1	This mark is given for a U shaped curve in any position
		B1	This mark is given for a y-intercept shown at $(0,9)$
		B1	This mark is given for a minimum shown at $(-1,7)$
(c)(i)	$g(x)=2(x-2)^{2}+4(x-2)+5$	M1	This mark is given for writing $g(x)$ in the form $a(x+b)^{2}+c$ and comparing to $\mathrm{f}(x)$
	Translation of $\binom{2}{-4}$	A1	This mark is given for deducing the translation of $y=\mathrm{f}(x)$ to $y=\mathrm{g}(x)$
(c)(ii)	$\begin{aligned} & \mathrm{h}(x)=\frac{21}{2(x+1)^{2}+7} \\ & \text { Maximum value }=\frac{21}{7}(\text { when } x=-1) \end{aligned}$	M1	This mark is given for writing $\mathrm{h}(x)$ in the form $\frac{21}{a(x+b)^{2}+c}$ and finding its maximum value
	$0<\mathrm{h}(x) \leq 3$	A1	This mark is given for finding the correct range of the function $\mathrm{h}(x)$

